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Summary. Analytic equations of the multiconfigurational SCF (MCSCF) response 
theory are combined with the finite-field (FF) approach to compute static and 
frequency dependent electric and magnetic properties of the Argon atom. A com- 
plete active space (CAS SCF) function including the 3s, 3p, 3d, 4s and 4p orbitals in 
the active space and a large (17s 13p 7d 5f 3g) basis set are employed. This permits 
an accurate determination of various linear and non-linear response properties 
such as e.g. electric dipole polarisability and second hyperpolarisability, Verdet 
constant, magnetisability and second hyperpolarisability. The results, both for the 
static values and for the frequency dependence of these properties, compare well 
with other most recent experimental and theoretical data. 
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Introduction and theory 

Numerous electric, magnetic and optical properties characterising the interaction 
of an atom or a molecule with weak external fields can be described using pertur- 
bation theory. Ab initio methods applying analytic and/or numerical pertur- 
bation schemes which enable accurate calculations of static and dynamic linear, 
quadratic, cubic, etc. response properties have been developed. Practical applica- 
tions indicate that for many atomic and molecular properties the Hartree-Fock 
approximation is not sufficiently accurate and it is essential to include correlation 
effects. For a description of the underlying theory, reviews and some examples of 
recent applications see for example refs. [1-4] and references therein. 

A natural extension of the SCF perturbation approach is offered by multicon- 
figurational SCF (MCSCF) response theory, which we apply in this work. In this 
formalism, an MCSCF reference function is used to describe the unperturbed 
system. The basic equations for the linear and quadratic MCSCF response have 
been given long ago [5-7]; more recently there have been many developments both 
in the theory and in the computational approach to the problem. The equations 
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determining the linear, quadratic and cubic (LR, QR and CR) response functions 
for an MCSCF reference wave function have been derived following the analysis 
for an exact state [7]. Solution of the LR function in a direct [-8, 9] scheme enables 
calculations with very large ( >  106) configuration spaces. This is a qualitative 
change, the non-direct codes require matrix inversion and thus limit to ca. 10 3 
configurations the C1 expansion. The QR was also implemented for MCSCF states 
[10] in a direct formulation. 

The potential of the LR and QR programs we use is also increasing. The atomic 
and molecular properties that can presently be calculated include electronic excita- 
tion energies, one- and two-photon transition moments, frequency-dependent 
electric and magnetic polarisabilities and hyperpolarisabilities, long-range inter- 
action coefficients, nuclear shielding constants, spin related properties etc. By 
coupling analytic response and finite field (FF) methods, higher-order electric and 
magnetic properties can be evaluated [11]. 

A few years ago one of us performed a MCSCF LR calculation of the frequency 
dependent electric dipole polarisabilities of He, Ne and Ar [12]. The use of 
non-direct codes and the limitations of the hardware at that time did not allow to 
obtain a completely satisfactory solution to the problem for the Argon atom. With 
the advent of new theoretical and computational techniques, the implementation of 
elaborate algorithms and the development of computer ware, accurate studies of 
first, second- and higher-order properties in atomic systems of the size of Argon 
became possible. This work presents the results obtained from large-scale multi- 
configurational LR and QR calculations for Argon. We computed the following 
properties: 

• static and frequency-dependent electric dipole polarisability; 
• static and frequency-dependent second electric dipole hyperpolarisabilities (Kerr 
effect); 
• C6 and A6, the coefficients characterising the dispersion contributions to the 
change of energy and polarisability due to weak intermolecular interactions; 
• Verdet constant; 
• static and frequency-dependent hypermagnetisability anisotropy (Cotton 
Mouton constant). 

In a related though independent study [13] QR was used to compute two- 
photon bound-bound transition probabilities in Argon. 

Most of the properties here considered were obtained by exploiting suitable 
moment expansions. LR furnishes directly the Cauchy moments which can be used 
to compute the dynamic electric dipole polarisabilities in the normal dispersion 
region through the well known expression (a.u. used throughout, see below) 

e ( -  co; co) = ~, S ( -  2n -- 2)(co2) ". (1) 
n = 0  

The S ( -  2n - 2) are the dipole Cauchy moments (moments of the dipole oscillator 
strength distribution). The radius of convergence of this expansion is determined by 
the first excitation energy, but there are many analytic continuation techniques 
which permit e.g. evaluation of c~(- ico; ico) for co ~ oe. e ( -  co; co) can be obtained 
directly, independently and in the whole frequency range by solving the appro- 
priate LR equations [8]. 
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In general analytic calculation of the dynamic second electric dipole hyper- 
polarisabilities 7 ( ,  coo; col, COz, c%) would require a cubic response (CR) approach. 
For the Kerr hyperpolarisability y ( - c o ;  co, 0, 0) the mixed analytical-numerical 
formalism [14] can be used. It may be computed using QR + FF, via f l ( -  co; co, 0), 
or using LR + FF  through second numerical derivatives of c~(- co; co). An equiva- 
lent of the last approximation can also be obtained from the Cauchy moments, 
essentially by taking the second derivative of Eq. (1) with respect to the field. 

7 ( -  co; co, 0, 0) = 2[cdr=:)( - co; co) -- c~v=°)( - co; co)]/f  2 

= 2 {,~o [ S ( ~ = : ) ( - 2 n - 2 ) - S ~ r = ° ' ( - 2 n - 2 ) ] ( c o 2 ) " } / f  2, 

(2) 

where f i s  the strength of the applied field. 
This expression can also be used with purely imaginary frequencies to obtain 

7( - ico; ico, 0, 0), which is of importance in the determination of the dispersion pair 
polarisabilities for weakly interacting atoms [15-17]. In the long-range interaction 
of two rare gas atoms (A and B at a distance R), the dispersion contribution to the 
energy can be obtained from the expansion 

AB ~ Cn 
dEdisp = R-- ~ . (3) 

n=6 

The Casimir-Polder relates C6 to c~(- co; co): 

C6 = _3 c~A(- ico; ico)c~B( - ico; ice) do). (4) 
7~ 0 

Similarly the dispersion contribution to the incremental polarisability AB A ~disp is 
written as [15] 

AB ~ An 
A ~di~,, = ~ ,  (5) 

n=6 

A 6 = c(1 + PAB) 0~A( - ico; ico)?n(-- ico; ico, 0, 0) do), (6) 
0 

where PA8 interchanges the two systems and the proportionality constant c varies 
with the contributions to A6 of various tensor components of c~A( - ico; ico) and 
7 B (  - ico; ico, 0, 0). Analytic continuation techniques and a suitable numerical integra- 
tion scheme are used to evaluate the integrals in Eqs. (4) and (6) via Eqs. (1) and (2). 

For non-zero values of co, there are two independent components of the 
y ( -  co; co, 0, 0) tensor e.g. 7zz, ,(-  co; co, 0, 0) and 7 . . . .  ( -  co; co, 0, 0). We shall as- 

1 sume here the so-called Kleinman symmetry, that is ? . . . .  ( - c o ;  co, 0 , 0 ) = 3  
Y .. . .  ( - c o ;  co, 0, 0) for all the frequencies, and discuss only the zzzz component. 
Deviations from Kleinman symmetry have been discussed for the Ar atom by Rice 
[18] and were found to be very small. 

The Verdet constant [19] V(co), which in a dilute gas of number density No is 
related to the dispersion of the optical refractivity [20, 21] and reproduces the 
dispersion of the Faraday rotation [22, 23] is another property that can be 
obtained from the Cauchy moments. In the Becquerel form, for atoms [20, 24, 25] 

7xN o d~( CO; 6O) _ 2nNo ~ n S ( -  2n - 2)(co2)" (7) 
V(co) = - 7  co dco c 2 

n=O 
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V(co) can also be computed independently by an appropriate combination of 
the QR functions ((r~; rj, Lk)),~.o (i,j, k = x,  y, z) involving position (r) and orbital 
angular moment (L) operators [25-27]. This alternative rigorous approach to the 
calculation of the Verdet constant is needed for non-spherical systems [25-27-1. For 
atoms it is more computationally demanding than calculations based on Eq. (7). 

In spherical systems, the hypermagnetisability anisotropy [28] Art(- co; co, 0, 0) = 
rtxx,= - rtyy,x~ is proportional to the molar Cotton Mouton constant mC, which is 
introduced in the description of the magnetic field induced birefringence [29, 30]. 
Its dispersion can be given in terms of a sum of paramagnetic and diamagnetic 
contributions as follows (i,j ,  k, l run over the x, y, z components; the Einstein 
summation is implied; Q represents the quadrupole operator): 

rti~,kt( CO; CO, O, O) P d = 1 _ ~1 ((ri," rj, - -  ~--" rtij ,  kl -~- rtij, kl - -  -f ( ( r i  ; r j ,  L k ,  Ll))~,,o,o Q k t ) ) o ~ , o .  

(8) 

Fully analytic evaluation of the paramagnetic contribution requires thus the 
evaluation of the CR function, while the diamagnetic component is described by 
the QR dipole-dipole-quadrupole electric second hyperpolarisability 

Arid = --~1 B . . . . .  (-CO; co, 0) = - ~ < < X , x , 1  ' ½(3x 2 - r2)>>,o.o. (9) 

On the other hand it has been proved [3t, 32] that for atoms the paramagnetic 
hypermagnetisability anisotropy can be written in terms of a typical Cauchy 
moment expansion as follows: 

Art~ = - 41 d2c~(-co;dco 2 co) = _ 41 ~ (2n + 1)(2n + 2)S(-2n - 4)(co2) ". (10) 
n = O  

The static values of the diamagnetic hypermagnetisability anisotropy are ob- 
tained by computing the appropriate expectation values with and without an 
applied finite electric field 

rt~ . . . .  (0;0, O, 0) = 2((x2) (F~='q - (x2)Ct'~=°))/ f  2 , 

rt~r.~x(0 ; 0, 0, 0) = 2(< y2 )(v~ =y) _ < y2)¢ex = 0))/f2. (11) 

In summary, for most of the properties we have chosen a mixed ana- 
lytic-numerical computational scheme. The advantage of a purely analytic ap- 
proach is that one avoids the problems of numerical differentiation (for example, 
full symmetry can be used). However, for higher-order properties the solution of 
the analytic equations becomes time-consuming when very large CI expansions 
and/or basis sets are applied. For some of the properties, we have used both 
approaches for selected frequencies and verified the accuracy of the calculations. 

Atomic units are adopted throughout the paper: 

• electric dipole polarisabilities: 1 a.u. (eaa2oE~ 1) = 1.64878( - 41) C 2 m 2 J-1; 
• electric dipole second hyperpolarisabilities: 1 a.u. (e4a~E~ 3) = 6.23538(- 65) 
C 2 m 4 j - z .  
• magnetisabilities: 1 a.u. (e2a2m~ 1) = 7.98104( - 2 9 ) J T - 2 ;  
• Verdet constant: 1 a.u. (rad eaoh/2n) = 2.763816( + 8) lamin G -~ cm -1 (at 1 arm 
of pressure) = 8.039624( + 4) tad T-  1 m-  1. 
• hypermagnetisabilities: 1 a.u. [e4a~/(meE~)] = 2.98425( - 52) C z m 2 J-  1 T-  2 = 

2.682108( - 44)(4ne.0) cm 3 G-2  
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Results and discussion 

The basis set we employed to obtain all the linear response static and dynamic 
results is summarised in Table 1. A (17s 13p 7d 5f 3g) Cartesian Gaussian uncon- 
tracted set (193 basis functions) was built by extending the (17s 13p 6d 2f ) set of 
Ref. [12]. The (16s 10p 5d 2 f )  uncontracted basis [331 already extended in Ref. 
[12"1, was further enlarged by adding one d function (exponent 0.21570), three 
ffunctions (exponents 0.8, 0.0125 and 0.003125) and three g functions. Some other 
basis sets were employed in the course of the investigation, mainly subsets of the 
basis of Table 1. The computationally intense QR dynamic property calculations 
were performed using the (17s 13p 6d 3 f lg )  uncontracted Cartesian Gaussian 
subset (137 basis functions) obtained by deleting the most diffuse d andfand the 
two inner 9 functions. This basis gave very accurate results for the two-photon 
bound-bound transition rate between the ground 1Se and the excited XDe states of 
argon [13]. A slightly larger ((19s 15s 7d 3f lg))  set with extra diffuse and extra 
tight s and p functions was also employed and we found out that the properties 
were practically insensitive to the extension of the s and p manifolds. 

Using the basis set of Table 1 we obtained for the SCF ground state en- 
ergy -526.810238a.u., to be compared with the numerical HF limit of 
- 526.81751 a.u. [34]. 

The correlated results presented in this work were obtained in the CAS SCF 
approximation. A complete active space including the 3s, 3p, 3d, 4s and 4p orbitals 
was selected on the basis of the natural orbital occupation numbers of a sec- 
ond-order Moller-Plesset calculation. The resulting C1 expansion included over 
125000 determinants. The lowest MP2 NO occupation number of an orbital 
included in the CAS was 0.0056 while the highest occupation number for an orbital 
excluded from the CAS was 0.0012, thus indicating that a sizeable amount of 
valence shell correlation for the given basis set is taken into account in our 

Table 1. (17s 13p7d 5f3g) Cartesian Gaussian uncontracted basis set (193 basis func- 
tions) 

s p d f g 

118186.0 660.901 
17688.8 157.219 

4027.3 50.0639 
1144,96 18.6119 
376.954 7.43692 
138.070 3.08857 
54.954 1.10267 
23.1650 0.414763 
7.37688 0.145449 
2.92369 0.051006 
0.650663 0.017887 
0.232877 0.006273 
0.083348 0.002 
0.029831 
0.010677 
0.003821 
0.001 

9.45 0.8 
3.15 0.2 
1.05 0.05 
0.35 0.0125 
0.116667 0.003125 
0.064710 
0.021570 

0.45 
0.22222 
0.1 
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approach. The MCSCF wave functions were determined using the SIRIUS pro- 
gram [35]. The integrals were computed with the HERMIT program [-36]. 

The CAS SCF ground state energy was - 526.986944 a.u., which is 7.44 mH 
above the corresponding CAS limit determined using a numerical multiconfigura- 
tional HF program [13]. This difference is almost equal to the corresponding SCF 
value. We have also performed an MP2 calculation, and the correlation energy 
was - 0.530 a.u.. This can be compared with other values close to - 0.600 a.u., an 
estimated MP2 limit of -0 .706  a.u. [37] and finally with the -0.7225 a.u. 
non-relativistic estimate of Ref. [38]. 

The values of the Cauchy moments S( - 2k - 2) for even k ranging from 0 to 10 
are reported in Table 2. The SCF and correlated (CAS SCF) values are compared 
with some experimental estimates taken from the literature for the lowest moments 
[39, 40]. We also report the moments for a finite-field calculation with an electric 
field of 0.001 a.u. strength. The finite-field values were employed to compute the 
electric field dependent hyperpolarisabilities V(- v); v), 0, 0) and V(- iv); iv), 0, 0) as 
discussed in the preceding section. This field strength was found adequate to 
compute accurate and stable values of the electric hyperpolarisabilities and hyper- 
magnetisabil!ties reported in the tables. 

We list in Table 2 only the Cauchy moments that were needed to achieve 
a satisfactory degree of convergence in the moment expansion for the properties 
considered here and in the frequency range of interest, although we were able to 
compute S ( -  2 k -  2) for k up to 20. Comparing the reduced 137 function set 
mentioned above with the basis of Table i, the S( - 2) SCF and CAS SCF values of 
Table 2 vary by less than 0.07% and S( - 18) varies by less than 1.5%. This shows 
a very high degree of convergence of the moments with respect to the basis set 
extension. 

Table 3 summarises the results obtained for some static electric and magnetic 
properties, and compares them with other recent theoretical estimates and, when 
available, experiment. The static values of the electric dipole polarisability c~(0, 0) 
and hyperpolarisability ~(0; 0, 0, 0) and the paramagnetic component of the hyper- 
magnetisability A/'/P(0; 0, 0,0) correspond to the first terms of the respective 
Cauchy moment expansions. The average values of quadrupole operators were 
computed to obtain the remaining static properties of Table 3 (see e.g. Eq. (11)). 
As indicated above, a finite field calculation was needed to compute the electric 
dipole hyperpolarisabilities and the diamagnetic hypermagnetisabilities. 

There is a vast literature on the ab initio determination of the electric dipole 
polarisability, and in the table we report only the most recent references for that 
property. The SCF value of 10.7606 a.u. is practically on top of the Hartree Fock 
limit [50]. The CAS SCF number is in very good agreement with that of Rice et al. 
[42] obtained with CCSD(T)+  core correction and with the MP2 estimate of 
Bishop and Cybulski [47]. The present result improves significantly the previous 
mutliconfigurational LR estimate of Ref. [12], where a smaller basis set and 
a complete active space missing the 3d orbital was adopted. This is evidently of 
fundamental importance for an accurate description of the properties of this atom. 

There are several references for both SCF and correlated (essentially MBPT or 
CCSD(T) plus finite field) static electric dipole second hyperpolarisabilities 
~(0; 0, 0, 0). We report only a few recent results. Our SCF value is slightly smaller 
than that of others. Also our CAS SCF estimate is smaller than that of Ref. [42] 
- a CCSD(T) + core correction calculation - and much smaller than the 1329 a.u. 
value obtained as best estimate at MP4 level by Cernusak et al. [51]. Techniques 
based on truncation of infinite-order expansions might suffer from convergence 
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problems, and this might be especially true for high-order properties [43, 51] (for 
example, in Ref. [43] the MP2 results are "too unstable to include" them). Also, the 
basis set dependence of high-order properties is not straightforward [42]. How- 
ever, it is very likely that we miss a part of the dynamic correlation effects, included 
in other calculations. 

The SCF result for the magnetisability of Argon is in close agreement with the 
others reported in the table. Ruud et al. [49], used the 137 functions subset of the 
basis of Table 1 to obtain their MCSCF reference result for the magnetisability of 
Argon. Our magnetisabilities are in satisfactory agreement with the PNO-CEPA 
results of Reinsch and Meyer [48]. 

The references for ab initio determination of hypermagnetisabitities and hyper- 
magnetisability anisotropies (closely related to the Cotton Mouton constant 
[28, 52]) are two very recent papers by Bishop and Cybulski [41, 47], who employ 
a mixed analytical-numerical method at the SCF and MP2 levels of approxima- 
tion. Their results and ours are in good agreement. A similar study furnished 
recently accurate results for the hypermagnetisability anisotropy (static value and 
dispersion) of the Neon atom [11]. 

d d From the data of Table 3 for At/d ~/xx.xx - r/rr.x~ and Eq. (9) we obtain static 
limits for the dipote-dipole-quadrupole second hyperpolarisability B . . . .  x(0; 0,0) 
of - 137.96 a.u. (SCF) and - 153.48 a.u. (MCSCF). Cernusak et al. [51] best 
estimates are - 140.9 a.u. (SCF) and - 164.3 a.u. (MP4). Other recent SCF values 
in the literature range from - 131 a.u. [53-1 to - 139.9 a.u. [41]. 

In agreement with what was reported in Ref. [42] the effect of the three 
9 functions in the basis on the static electric polarisability and magnetic susceptibil- 
ities of Table 3 is negligible. Deleting these functions in the basis modifies the values 
of the polarisabilities by less than 0.08% and the second hyperpolarisabilities by 
less than 1.5%. In summary, it appears that we have reached convergence with the 
basis set for most of the computed static properties. The present CAS SCF results 
agree well with experiment and with other ab initio values. Similar to Neon 
[47, 54], the CAS SCF results yield smaller values of the correlation corrections 
than MBPT and CC methods, which include more dynamic correlation effects. The 
available experimental data indicate that the CAS SCF results slightly under- 
estimate correlation effects, and the other methods tend to overestimate them. 

Table 4 and Fig. 1 show the results obtained for the frequency-dependent 
electric dipole polarisability c~(- o9; co), using the Cauchy moment expansion 
Eq. (1). We have verified for selected values of 09 that the results of a direct LR 
calculation agree to all figures with those of Table 4. The 193 basis function values 

Table 4. Electric dipole polarisability c~( - co; co). Atomic units. Basis set of Table i. The values in the 
last column were obtained from the experimental Cauchy moments  of Ref. [39] 

SCF Correlated Exp. 

This work Ref. [18] This work Ref. [18] Ref. [39] 
co (a.u.) co (nm) ct( - co; co) ct( - co; co) ct( - co; co) ct( - co; co) ~t( - co; co) 

0 oo 10.761 10.73 11.171 11.20 11.08 
0.02 2278 10.771 10.74 11.182 11.21 11.09 
0.04 1139 10.802 10.77 11.216 11.24 11.12 
0.06 759.4 10.853 10.82 11.274 11.30 11.18 
0.08 569.5 10.927 10.90 11.356 11.37 11.26 
0,10 455.6 11.024 10.99 11.464 11.47 11.37 
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Fig. 1. Electric dipole polarisabili ty c~( - co; co). Atomic units. 

reported in the table are on average 0.04% (SCF) and 0.06% (CAS SCF) lower than 
those obtained with the reduced 137 basis function set. Our correlated results agree 
well with the recent MP2 estimates by Rice [18] and fairly well with experiment 
[39]. 

The electric dipole hyperpolarisability 7( - 09; 09, 0, 0) was computed using the 
Cauchy moment values of Table 2 in Eq. (2) and a finite-field strength of 0.001 a.u. 
The frequency dependence of the second electric hyperpolarisability for Argon was 
thus obtained by coupling LR (not QR) and FF. A plot of the Kerr effect is given in 
Fig. 2. The experimental data in Fig. 2 are the Kerr effect values extracted from 
Ref. [46] using the power series expansion of the second-order hyperpolarisability 
parallel component [46, 55, 56]. 

?( -- 09,; o91,0)2, 09a) ~ 7(0; 0, 0, 0)[1 + A09~ + B09~]. (12) 

2 (1) 2 + co2 z + co~. The fitting of experimental ESHG data in where 09~ = 09~ + 
Ref. [46] gives ~,(0; 0, 0, 0) = 1165.6108 a.u., A = 5.13342 a.u. and B = 47.1451 a.u. 
Our correlated data for 7 ( -  09; 09, 0, 0) can be best fitted by Eq. (12) with 
~,(0; 0, 0, 0) = 1122.61 a.u., A = 5.96449 a.u. and B = 29.3072 a.u. The most recent 
computational study of the Kerr effect in Argon is a MP2 calculation by Rice [18], 
whose data are fitted in Ref. [57] with ?(0; 0, 0, 0) = 1220 a.u., A = 5.183 a.u. and 
B = 31.857 a.u.. The present CAS SCF results and those of Rice [18, 57] go in 
opposite directions with respect to Shelton's [46] experiment. As with all the other 
properties discussed here the SCF results are quite distant from experiment and the 
effect of correlation is significant. 

As mentioned in the Theory section, the Cauchy expansion provides also the 
data needed for the analysis of the dispersion contributions in the weak inter- 
molecular interactions regime. Using Eq. (4), we obtain C6 -- 62.00 a.u. at the SCF 
level and C6--64.94 a.u. for the MCSCF calculation. This compares well with 
other ab initio results, such as the 61.833 a.u. value in the SCF approximation of 



MCSCF calculation of response properties of Argon 301 

1400 

1300 

1 
~ 1200 

SCF (This Work) 
- - - I - -  SCF (Ref, 18) ~ <  

~- Corr. (This Work) 
--K--Corr. (Ref. 18) 

)i( Exp. (Ref. 46) 

1100 

1000 

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 
Frequency (a.u.) 

Fig. 2. Electric dipole second hyperpolarisability (Kerr effect), 7( - co; co, 0, 0). Atomic units. 

Ref. [58] or the 64.543 a.u. MP2 result of Ref. [59] or with the experimental 
estimate of 64.30 a.u. found in Ref. [60]. 

There are apparently no ab initio values of A6 for Ar derived applying explicitly 
7 ( -  io); ico, 0, 0) as in Eq. (6). We can however compare our results with the 
estimates, derived following Hunt et al. [61]. 

7 C67(0; 0, 0, 0) 
A 6 - (13) 

9 e(0, 0) 

Our results are 4313 and 4981 a.u. in the SCF and MCSCF approximations, 
respectively. Both values were obtained applying [7, 6] Pad6 approximants to the 
series {SF=S( - 2k - 2) - SV=°( - 2k - 2)} and appear to be accurate to + 2%. 
The corresponding estimates, obtained from SCF and MCSCF values of C6, 
7(0; 0, 0, 0) and c~(0; 0) are 4243 and 5073 a.u., so Eq. (13) provides a very good 
approximation to A 6 . Applying Eq. (13) and using the experimental data we obtain 
A 6 = 5270 a.u. (different data were used in Ref. [61]). Thus both the accurate and 
approximate values derived from MCSCF Cauchy moment expansion are in much 
better agreement with experiment than any SCF result. 

Table 5 and Fig. 3 show the results obtained for the Verdet constant V(co) via 
. Eq. (7). The other determinations of the Verdet constant in Argon are in Refs. 

[20, 21]. Dalgarno and Kingston [20] used a semiempirical approach to estimate 
the negative even Cauchy moments to be introduced in Eq. (7). The results of 
Langhoff's investigations [21], including bounds coming from Stieltjes-Tchebicheff 
moment theory and reported in Table 5, were obtained from different Cauchy 
moment distributions. Table 5 and Fig. 3 show also a comparison with the 
experiment. Correlation improves significantly the Hartree-Fock values, and the 
CAS SCF results are in very good agreement with experiment and within 
Langhoff's bounds [21]. The Verdet constant computed at both SCF and CAS 
SCF level with the smaller (137 basis function) set are at most 0.3% smaller than 
those of Table 5. We computed for some of the frequencies in Table 5 the Verdet 
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Fig. 3. Verdet constant V(~o). Atomic units x 10 -7. 
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constant by QR in the 137 functions basis and again the results coincide with those 
obtained in the same basis via Cauchy moments. 

The dispersion of the hypermagnetisability anisotropy At/( - co; co, 0, 0) is dis- 
played in Table 6. Eqs. (9) and (10) were employed to obtain the results of Table 
6 for tile hypermagnetisability anisotropy of Argon. These equations do not allow 
to compute separately t/ . . . . .  ( - co; co, 0, 0) and t/ry,~x( - co; co, 0, 0), but only their 
difference. Because of the diamagnetic contribution involved the time-consuming 
QR calculation, the dispersion effects for At/( - co; co, 0, 0) were calculated using 
the 137 functions basis set. The (absolute value) of the paramagnetic contribution 
to the hypermagnetisability anisotropy gets larger by a maximum of 0.05 a.u. in the 
range of frequencies shown when using the larger set, a change of less than 0.4%, 
for both SCF and CAS SCF. We expect that the basis set dependence of the 
diamagnetic contribution is similarly small. 

A similar study furnished recently accurate results for the hypermagnetisability 
anisotropy of the Neon atom. As in the case of Neon [11] the overall dispersion in 
both the SCF and CAS SCF approaches is practically negligible (there was 
a mistake in the static SCF results in Ref. [-11]: the correct values of the paramag- 
netic and total anisotropies are - 1.050 and 2.206 a.u., respectively). The current 
results are pretty much in agreement with those obtained by Bishop and Cybulski 
[47] both at Hartree-Fock and correlated (MP2 in Ref. [47]) levels. The compar- 
ison with the available experimental number is in this case, contrary to the case of 
Neon [11], quite favourable. 

To summarise, we have shown that very accurate results for various properties 
of the Argon atom may be obtained applying MCSCF response functions. We have 
taken advantage of the interrelations between different properties, which are exact 
for atoms. Therefore, a practical approach based on differentiating the Cauchy 
expansion with respect to co and with respect to additional perturbing finite field 
was used to simplify the calculations. This means that for most of the properties 
only solutions of linear response equations were required, and a larger basis set and 
CI expansion were applied than would be possible otherwise. 
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The calculations were performed on a Convex C-3840 with partially vector 
optimised codes. While the linear response calculations were substantially CPU 
inexpensive, the quadratic response calculations requested each, for a whole set of 
frequencies, a few hours of CPU time. 
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